Národní úložiště šedé literatury Nalezeno 7 záznamů.  Hledání trvalo 0.01 vteřin. 
Spin wave excitation and propagation in magnonic crystals prepared by focused ion beam direct writing
Křižáková, Viola ; Olejník,, Kamil (oponent) ; Urbánek, Michal (vedoucí práce)
Paramagnetic Ni-stabilized fcc Fe thin films epitaxially grown on Cu(100) are known for their capability to undergo ion-beam-induced phase transformation into ferromagnetic bcc phase. To bring these metastable films closer to the application, a Cu(100) substrate can be further substituted by Si(100) with a Cu(100) buffer layer. With the use of a focused ion beam, magnetic properties of the films can be locally tailored and modulated. Moreover, this alternative approach to the preparation of media suitable for spin-wave guidance provides patterning possibilities unattainable by conventional lithography techniques. Magnetic structures prepared in this way are studied by all-electrical spin-wave spectroscopy. This thesis covers the entire process from the metastable thin film growth, through the patterning, to structural studies and static and dynamic magnetic characterization. A broadband ferromagnetic resonance and propagating spin wave spectroscopy experiments are performed on focused-ion-beam-transformed continuous layers and microstructures. Microscale coplanar waveguides are used for inductive excitation and detection of spin waves with defined wavevectors. Magnetic properties such as saturation magnetization and damping are extracted from the ferromagnetic resonance measurements and characteristics of the propagating modes such as spin-wave decay length or group velocity are studied and compared with common ferromagnetic materials.
Study of magnonic crystals in a frequency domain
Turčan, Igor ; Hrabec, Aleš (oponent) ; Urbánek, Michal (vedoucí práce)
Characterization of magnetodynamic properties of nanomagnets and nanostructured magnetic materials requires methods appropriate for probing the typical timescales of these systems, i.e. in the sub-nanosecond range. The lack of appropriate time-domain characterization techniques is linked to the limits of current electronics. Other possible approach is to use the frequency domain characterization in GHz range. The most common frequency domain characterization technique is the ferromagnetic resonance (FMR) measurement. From FMR spectra it is possible to extract valuable information about the magnetic system: the damping parameter, saturation magnetization etc. The method we utilize for detection of spin-wave excitations aims for the simplification of the characterization experiment. We employ the thermoelectric detection of spin waves in magnetic strips via anomalous Nernst effect. The method is based on the heat generation inside a magnetic film due to the relaxation of spin waves to the lattice. The dissipation of spin-wave energy heats the magnetic strip and creates a temperature gradient towards the substrate (perpendicular to the surface). This leads to generation of an electric field perpendicular to both the temperature gradient and the magnetization direction. The voltage is usually in the V range, hence it can be measured with common laboratory equipment. Despite its simplicity, this method yields very interesting results and can be used for characterization of magnonic waveguides, magnonic metamaterials, spin-wave emitters and other spin-wave devices.
Návrh zařízení pro měření magnetodynamických vlastností magnetických materiálů a nanostruktur
Roučka, Václav ; Vaňatka, Marek (oponent) ; Turčan, Igor (vedoucí práce)
Další rozvoj magnoniky, vědního oboru zabývajícího se fenoménem spinových vln, je spojen s výzkumem nových materiálů a struktur s užitečnými magnetodynamickými vlastnostmi. Jednou z experimentálních technik sloužících ke zjištění takových vlastností je měření feromagnetické resonance pomocí vektorového obvodového analyzátoru. Touto experimentální technikou se zabývá předložená bakalářská práce. Nejprve jsou zde stručně uvedeny teoretické základy dynamiky magnetizace a šíření elektromagnetických vln v mikrovlnných obvodech. Dále jsou v práci popsány jednotlivé komponenty experimentální sestavy a její konstrukce. Funkce zařízení je prezentována na měření feromagnetické resonance vzorku permalloye. Naměřená data jsou zpracována podle metod uvedených v této práci a na závěr jsou předloženy výsledné magnetodynamické vlastnosti permalloye.
Návrh zařízení pro měření magnetodynamických vlastností magnetických materiálů a nanostruktur
Roučka, Václav ; Vaňatka, Marek (oponent) ; Turčan, Igor (vedoucí práce)
Další rozvoj magnoniky, vědního oboru zabývajícího se fenoménem spinových vln, je spojen s výzkumem nových materiálů a struktur s užitečnými magnetodynamickými vlastnostmi. Jednou z experimentálních technik sloužících ke zjištění takových vlastností je měření feromagnetické resonance pomocí vektorového obvodového analyzátoru. Touto experimentální technikou se zabývá předložená bakalářská práce. Nejprve jsou zde stručně uvedeny teoretické základy dynamiky magnetizace a šíření elektromagnetických vln v mikrovlnných obvodech. Dále jsou v práci popsány jednotlivé komponenty experimentální sestavy a její konstrukce. Funkce zařízení je prezentována na měření feromagnetické resonance vzorku permalloye. Naměřená data jsou zpracována podle metod uvedených v této práci a na závěr jsou předloženy výsledné magnetodynamické vlastnosti permalloye.
Spin wave excitation and propagation in magnonic crystals prepared by focused ion beam direct writing
Křižáková, Viola ; Olejník,, Kamil (oponent) ; Urbánek, Michal (vedoucí práce)
Paramagnetic Ni-stabilized fcc Fe thin films epitaxially grown on Cu(100) are known for their capability to undergo ion-beam-induced phase transformation into ferromagnetic bcc phase. To bring these metastable films closer to the application, a Cu(100) substrate can be further substituted by Si(100) with a Cu(100) buffer layer. With the use of a focused ion beam, magnetic properties of the films can be locally tailored and modulated. Moreover, this alternative approach to the preparation of media suitable for spin-wave guidance provides patterning possibilities unattainable by conventional lithography techniques. Magnetic structures prepared in this way are studied by all-electrical spin-wave spectroscopy. This thesis covers the entire process from the metastable thin film growth, through the patterning, to structural studies and static and dynamic magnetic characterization. A broadband ferromagnetic resonance and propagating spin wave spectroscopy experiments are performed on focused-ion-beam-transformed continuous layers and microstructures. Microscale coplanar waveguides are used for inductive excitation and detection of spin waves with defined wavevectors. Magnetic properties such as saturation magnetization and damping are extracted from the ferromagnetic resonance measurements and characteristics of the propagating modes such as spin-wave decay length or group velocity are studied and compared with common ferromagnetic materials.
Studium precese magnetizace v materiálech a strukturách pro spintroniku
Kašpar, Zdeněk ; Olejník, Kamil (vedoucí práce) ; Veis, Martin (oponent)
V této práce se zabýváme studiem precese magnetizace v tenké vrstvě feromagnetického polokovu NiMnSb. Pozorovali jsme precesi magnetizace pomocí časově rozlišeného optického experimentu pump & probe při teplotách od 15 do 200 K. Z měření jsme vyhodnotili magnetické anizotropie, spinovou stiffness a Gilbertův faktor tlumení. V rámci této práce byla postavena nová aparatura na měření feromagnetických rezonancí využívající vektorový analyzátor. V této aparatuře jsme provedli měření v rozsahu teplot od pokojové (300 K) po 75 K. Vyhodnotili jsme stejné parametry, jako z optického experimentu. Zjistili jsme, že výsledky obou metod jsou konzistentní Powered by TCPDF (www.tcpdf.org)
Study of magnonic crystals in a frequency domain
Turčan, Igor ; Hrabec, Aleš (oponent) ; Urbánek, Michal (vedoucí práce)
Characterization of magnetodynamic properties of nanomagnets and nanostructured magnetic materials requires methods appropriate for probing the typical timescales of these systems, i.e. in the sub-nanosecond range. The lack of appropriate time-domain characterization techniques is linked to the limits of current electronics. Other possible approach is to use the frequency domain characterization in GHz range. The most common frequency domain characterization technique is the ferromagnetic resonance (FMR) measurement. From FMR spectra it is possible to extract valuable information about the magnetic system: the damping parameter, saturation magnetization etc. The method we utilize for detection of spin-wave excitations aims for the simplification of the characterization experiment. We employ the thermoelectric detection of spin waves in magnetic strips via anomalous Nernst effect. The method is based on the heat generation inside a magnetic film due to the relaxation of spin waves to the lattice. The dissipation of spin-wave energy heats the magnetic strip and creates a temperature gradient towards the substrate (perpendicular to the surface). This leads to generation of an electric field perpendicular to both the temperature gradient and the magnetization direction. The voltage is usually in the V range, hence it can be measured with common laboratory equipment. Despite its simplicity, this method yields very interesting results and can be used for characterization of magnonic waveguides, magnonic metamaterials, spin-wave emitters and other spin-wave devices.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.